Design, Development and Optimization of UPF
Data Plane (5G)

A Report
Submitted in partial fulfillment of the requirements
of the degree of

Master of Technology

in Computer Science and Engineering

by

Diptyaroop Maji
Roll No. 183050016

Supervisor:

Prof. Mythili Vutukuru

\\\\\, T gy y)
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY BOMBAY
June, 2020

Abstract

The 3GPP 5G technology can provide excellent user experience for a variety of new
bandwidth/latency driven use-cases that are arising nowadays, ranging from video
streaming services to self-driven cars. This is due to the several modifications sug-
gested in the 3GPP standards — modular architecture, separation of the Control
and the User Plane and customizable packet processing pipeline, to name a few. As
a result, 5G is a very active research area. IIT-B is building a 5G test-bed from
scratch to contribute to that research. Currently, a kernel-based User Plane Function
(UPF) has been built for the Data Plane (DP), which performs fine under normal
circumstances. However, it cannot handle very fast I/O due to the kernel and the
implementation limitations, and thus cannot saturate line rate. This report briefly
describes the current 5G Data Plane (DP) design, before moving on to its main
contribution — talking about an optimized UPF Data Plane design. It describes a
UPF design where the kernel is bypassed using Intel’s Data Plane Development Kit
(DPDK) [1]. Since the data plane does not use the kernel TCP/IP stack, packets are
processed in the userspace. The report explores both run-to-completion (RTC) and
pipeline models in the DPDK based UPF and compares them with other designs of
UPF currently being developed. Unrestricted by the limitations associated with the
kernel, the DPDK based UPF saturates the 10G line rate between the Radio Access
Network (RAN), UPF and the Data Network Name (DNN) while supporting essential
features like Quality of Service (QoS). The RTC design performs better currently and
saturates 10 Gbps from 256 B payload onwards. In contrast, the pipeline design sat-
urates the uplink for payloads >= 256 B and downlink from 512 B payload onwards
(when a single core is dedicated to DP packet processing).

Contents

1 Introduction

1.1 Problem Statement

1.2 Contribution

2 Background

2.1 5G architecture

Data Plane in the 5G Test-bed

3.1 User Plane Function (UPF)

3.2 PDU Session

Setup

3.2.1 Packet Forwarding Control Protocol (PFCP) interface
3.2.2 Optimizing the PFCP library
3.3 Data Plane procedures
3.3.1 GTP tunnelling
3.3.2 Packet Processing L.
3.3.3 End to end data transfero

3.4 Kernel based

UPF limitations

Optimizing the 5G Data Plane

4.1 Intel Data Plane Development Kit
4.2 Kernel bypass design oL
4.2.1 ARP request and response
4.2.2 Registering with NRF
4.2.3 Handling Control Plane Messages
4.2.4 Designing the Data Plane
4.2.5 Handling Data Plane Messages

4.3 Challenges .

4.3.1 Design Choices
4.3.2 Scalability across NUMA nodes
4.3.3 Implementation challenges

Enforcing Quality of Service (QoS)

5.1 State of the art QoS
5.2 QoS in the DPDK based UPF

6 Evaluation

6.1 Experimental Setup oo

6.2 Results . . .

6.2.1 Single core performance
6.2.2 Scalability with multiple cores

—_ =

w W

© © 0O DT R

6.2.3 Latency measurements

6.2.4 QoS correctness
6.2.5 QoSoverhead

6.2.6 Comparison of different UPF designs

6.2.6.1 RTC vs Pipeline

6.2.6.2 Comparing the UPFs in 5G testbed

7 Related Work

8 Current and Future Work
9 Conclusion

Appendices

A TImplementation bugs and fixes

i

42

43

46

47

List of Figures

2.1

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

5.1

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15

5G architecture 3
GTP header 6
UL PDU session container 7
DL PDU session container 7
DP Packet processing pipeline L. 8
DP implementation in 5G test-bed L. 9
Kernel UPF bottlenecks 10
Kernel UPF profiling 11
Kernel UPF detailed trace 11
DPDK core components oo 13
Control Plane packet flow 15
DPDK RTC design 16
DPDK pipeline design 17
Downlink packet processing 19
Data Plane packet flow in pipeline design 20
Reusing received packet L 20
Core to TX queue mapping 21
CP packet handling design 23
CP packet handling design 24
Carousel architecture 26
Experimental Setup oo 28
Single Core throughput (Mpps) for various payload sizes 29
Single Core throughput (Gbps) for various payload sizes 30
Performance with multiple UEs (Mpps) 31
Multicore performance (Mpps) 31
Multicore performance (Gbps) 32
Time series graph showing rate limiting 33
Rate limiting both UL and DL packets simultaneously 34
Rate limiting across multiple cores/UEs 34
RTC: Profiling with and without QoS 35
Code profiling: RTC vs Pipeline 36
Single core performance of various UPFs (Uplink) 37
Single core performance of various UPFs (Downlink) 37
Performance of various UPFs with multiple UEs 38
Multi-core performance of various UPFs (Downlink) 38

il

List of Tables

4.1

6.1
6.2
6.3
6.4

RTC vs Pipeline design — pros and cons 22
Latency for uplink packets L. 33
Latency for downlink packets 33
Comparing packet processing times of DPDK and eBPF based UPF . 39
UPF design comparison 40

v

Abbreviations

3GPP
AMBR
AMF
ARP
CP
DNN
DP
DPDK
eBPF
F-TEID
GBR
GTP
IE
LTE
MTU
NF
NRF
NUMA
PDU
PFCP
QFI
QoS
RAN
SFP
SMF
TLB
UE
UPF
XDP

Third Generation Partnership Project
Aggregate Maximum Bit-rate

Access and Mobility Management Function
Address Resolution Protocol

Control Plane

Data Network Name

Data Plane

Data Plane Development Kit
extended Berkeley Packet Filter

Full Tunnel Endpoint Identifier
Guaranteed Bit-rate

GPRS Tunnelling Protocol
Information Element

Long Term Evolution

Maximum Transmission Unit
Network Function

Network Repository Function

Non Uniform Memory Access

Packet Data Unit

Packet Forwarding and Control Protocol
QoS Flow Identifier

Quality of Service

(Radio) Access Network

Small Form-factor Pluggable

Session Management Function
Translation Lookaside Buffer

User Equipment

User Plane Function

eXpress Data Path

1. Introduction

Cellular traffic is growing at an exponential rate due to a diverse set of services rang-
ing from voice and video calling, gaming, video streaming (which require high band-
width), to home IoT devices and autonomous cars (which require ultra-low latency).
The 3GPP 5G technology is believed to be able to enhance the user experience for
these and several other new use-cases, which the currently deployed 4G networks are
not able to. This improvement is due to several modifications in both specification
and implementation aspects in 5G, such as modular architecture with well-defined
Network Functions (NF), a clear separation between the Control and the User Plane
(the terms “Data Plane” and “User Plane” are used interchangeably in this report),
and customized processing pipeline for different devices based on their high band-
width or low latency requirements (network slicing). As a result, there is currently a
massive drive to design, develop and understand the 5G technology in both academia
and industry. Here at IIT-B, we are building a 5G test-bed from scratch so that we
can explore various design options both in the Control Plane and the Data Plane,
and contribute to the understanding of 5G.

1.1 Problem Statement

Based on the context provided above, the first goal was to build the User Plane
Function (UPF) from scratch which would enable a User Equipment (UE) to send
and receive data from the Internet. However, the current implementation of UPF in
the 5G test-bed has several limitations which degrade its performance. For instance,
the kernel stack cannot handle packet processing when the I/O rate is very high; there
is a TUN device used between the UPF and the DNN which forms a bottleneck etc.
These decreases the Data Plane (DP) throughput and increases the packet processing
latency. The exciting thing to explore is how to remove the said limitations and
overheads so that the UPF forwards packets at the 10G line rate in both uplink and
downlink. It should be able to saturate the line rate even when multiple UEs are
sending different sized packets simultaneously while supporting essential features like
Quality of Service (QoS) for each UE.

1.2 Contribution

Stage-I was about developing the UPF from scratch. I am a part of the team that
built the kernel-based UPF along with the GTP library (required for packet encapsu-
lation/decapsulation in the path between the RAN and the UPF). The kernel-based
implementation bottlenecked at 1.80 Gbps (uplink) and 1.77 Gbps (downlink) for
1422B packets (without any QoS implementation), due to the limitations mentioned
above. Possible solutions to the problem(s) include:

1. Bypassing the kernel entirely to avoid the overheads and processing packets in
the userspace.

2. Shifting the packet processing to hardware.

3. Processing in the Linux kernel but at the device driver level, skipping the kernel
TCP/IP stack.

Since kernel bypass is one of the most popular techniques currently used in both
academia and industry, Stage-I then moved on to optimizing the 5G test-bed DP by
bypassing the kernel with the help of Intel’s Data Plane Development Kit (DPDK) [1]
framework, so that line rate is achieved while forwarding both uplink and downlink
packets. At the end of Stage-I, UPF was saturating the 10G link for 15008 packets.
However, the performance was significantly below par for smaller sized packets or
when multiple UEs sent data simultaneously. The UPF also did not have essential
features like ARP or Quality of Service (QoS). Stage-1I was focused on optimizing
the DPDK based UPF further, adding new features, and implementing Quality of
Service (QoS). The current version of the DPDK based UPF enforces QoS on each
UE based on pre-defined rules. It also supports features like ARP and verification of
checksum for incoming packets. The current DPDK [1] based UPF implementation
has been tested with 99k sessions and 2'* UE sending packets simultaneously from
the RAN, wherein it saturates the 10G connection in the DP for payload sizes 256 B
or more (when a single core is dedicated for DP packet processing). The maximum
processing capacity of the UPF is 4.11 million packets per second (Mpps) in the down-
link. This is not enough to saturate 10G for smaller payloads when a single core is
used for packet processing. Of course, the line rate is saturated when multiple cores
are used. Current and future work involves investigating techniques to scale across
NUMA nodes, implementing more sophisticated QoS where each UE is guaranteed
to have a minimum bitrate, further optimizing the UPF design using hardware accel-
erators etc.

The following sections in this report are organized as follows: Section 2 discusses
the 5G architecture as given in the 3GPP specifications. Section 3 talks about how
the data plane works in the 5G test-bed and what are the limitations associated with
the kernel-based UPF. Section 4 addresses how to overcome those limitations and
optimize the data plane by techniques like bypassing the kernel. It also describes
the new DPDK-based UPF design and the challenges associated while developing
the UPF. Section 5 elaborates on how Quality of Service (QoS) is implemented and
enforced. Section 6 outlines the experimental setup, measures the performance of the
UPF in terms of throughput and correctness and compares the DPDK based UPF
with other designs. Sections 7 and 8 talk about related work that is going on currently
and potential future work. Section 9 concludes the report.

2. Background

2.1 5G architecture

Figure 2.1 shows the 5G architecture as per 3GPP standards. UE to RAN is the
wireless 5G Access Network, while the remaining is the wired 5G Core network.

NSSF NEF NRF PCF UDM AF
Nnssf Nnef Nnrf Npef Nudm Naf
Nsmf

Nausf Namf
AUSF AMF SMF

UE (R)AN UPF DN

Figure 2.1: 5G architecture!

The 5G architecture is a modular structure, with different Network Functions
(NFs) handling different well-defined functionalities. The Network Repository Func-
tion (NRF) supports service discovery. All other NFs must register to the NRF when
they start, and the NRF provides information about other discovered NFs to that
NF. The Access and Mobility Function (AMF) is the leading Control Plane (CP)
component in 5G, which deals with registration and connection management for User
Equipments (UE). The Session Management Function (SMF) deals with session man-
agement (eg., PDU session establishment, described later). SMF is also in charge of
IP allocation to the UEs. All messages from the UE reach SMF via the AMF.

There is a clear separation between the Control Plane (CP) and the Data Plane
(DP) in 5G. All the above components are in CP, whereas the main component in
the DP is the User Plane Function (UPF), which processes and forwards the actual
data packets. Section 3.1 talks about UPF in detail.

Before a UE sends/downloads any data from the Internet, there is an exchange
of CP messages between the SMF and the UPF to set up a session. During session
establishment, SMF installs rules in the UPF, and the UPF processes all packets
following those rules. All data transfer takes place inside the session, which can be
released if the UE no longer needs to send/receive any data. Sections 3.2 and 3.3.2
elaborate the session setup procedure and UPF packet processing respectively.

13GPP TR 23.501, July 2017, Figure 4.2.3-1

3. Data Plane in the 5G Test-bed

This section describes the kernel-based implementation of the UPF in the 5G test-
bed. The following subsections give a brief introduction about the UPF, PDU session
establishment and GTP tunnelling. The final subsection explains the details of the
end to end Data Plane.

3.1 User Plane Function (UPF)

UPF is the main NF in the 5G Data Plane (DP). As per specification, it has the
following functionalities:

o In the Data Plane, it is the anchor point between the Access Network (AN)
and the 5G Core Network (CN). It is also the gateway to the DNN for uplink
packets.

The main functionality of the UPF is to route and forward the packets based
on some rules set by the SMF.

Handling and enforcing Quality of Service (QoS).

UPF can keep track of and report traffic usage statistics.
When the UE is idle, UPF can also buffer downlink packets until the UE be-

comes active.

3.2 PDU Session Setup

Before actually sending any uplink/downlink Data Plane (DP) packets, the UE must
request for a PDU session to be set up. The SMF initiates the session establishment
procedure with the UPF wherein the GTP tunnel endpoint ID (TEID) is set up.
TEID is required for creating a GTP tunnel between the UPF and the RAN through
which the DP packets travel. The rules tell the UPF what to do when it receives an
uplink /downlink packet — how to process it and whether to forward it, buffer it for
the time being, or discard it. The current implementation does not support buffering.

3.2.1 Packet Forwarding Control Protocol (PFCP) interface

All communication between the UPF and the SMF is in the form of PFCP messages.
A PFCP message consists of a PFCP header and a set of Information Elements (IE),
which carry the rules that need to be installed at the UPF. The PFCP library, along
with the session setup procedure (briefly described next) was developed by the project
engineers associated with the 5G test-bed and has been optimized (implementation-
wise) as a part of this project.

« PFCP Association Setup
On discovering a UPF, the SMF sends out a PFCP association request to the
UPF, which contains the features that the SMF supports along with the SMF
IP. On receiving the request, UPF sends out an association response, containing
its IP, the features it supports, and the TEID range that the SMF can allocate
TEIDs from while establishing a session. Association is done before any PDU
session establishment.

« PFCP Session Establishment

When a UE requests for a PDU session, the SMF sends out a PFCP Session
Establishment request to the UPF. This request contains the Packet Detec-
tion Rules (PDR) and corresponding Forward Action Rules (FAR) and QoS
Enforcement Rules (QER) which the UPF needs to install and check against
uplink packets arriving in the future. The request also contains a TEID (from
the allowed range) for the UPF. The UPF tries to install the rules and sends
out a success/failure message in the form of Session Establishment Reply.
SMF and UPF also share the Session endpoint ID (SEID) while establishing the
session, which distinguishes the current session from other sessions. All future
session-related messages need this SEID.

« PFCP Session Modification
After receiving the RAN-side GTP tunnel information, the SMF sends a
Session Modification Request to the UPF. Session modification request contains
the PDRs, FARs and QERs for downlink packets along with RAN side GTP
tunnel info, which the UPF needs to create a GTP tunnel with the RAN and
forward any GTP packets. UPF sends out a success/failure reply based on
whether it was able to install the rules.

o PFCP Session Release
On receiving a session release request from RAN/UE, the SMF sends out
a PFCP session release request to the UPF to tear down the corresponding
session. The UPF deletes all the PDRs/FARs related to that session along with
the SEID and sends back a success/failure reply to the SMF.

3.2.2 Optimizing the PFCP library

The initial implementation of the PFCP library was sub-optimal. Vectors and ordered
maps were being used to store PFCP messages. To search an IE, the data structures
were traversed, which is O(n) in the worst case (n being the number of elements
stored). Although this was not becoming a bottleneck even when multiple sessions
were created in the control plane (tested with 99K sessions), it had the potential to
become one if the number of sessions went up to millions. In Stage-II, the vectors
and the ordered maps were replaced by unordered maps (hashtables). As a result, the
worst-case time complexity to find any IE has come down to O(1), and the library is
now optimized.

3.3 Data Plane procedures

After establishing a PDU session, Data Plane (DP) packets can now go from the UE
to the DNN and vice versa. This section describes the GTP tunnelling between the
RAN and the UPF, that is required for supporting UE mobility, before moving on to
discuss how the current (kernel-based) Data Plane works.

3.3.1 GTP tunnelling

Tunnelling is required to support UE mobility. GTP-U tunnels carry encapsulated
data packets between a pair of NFs (RAN-UPF or UPF-UPF). Usually, both end-
points have a Tunnel Endpoint ID (TEID) associated with them for both ways com-
munication. TEID (of the destination node) present in GTP header tells to which tun-
nel a particular packet belongs. This implementation uses GTP version 1 (GTPv1),
as per specifications, which is a unidirectional tunnel. Hence, a pair of tunnels are
needed for duplex connections.

GTPv1-U sending endpoint: GTP runs over UDP. So, an incoming IP packet
at the sending endpoint shall be encapsulated with a GTP header, followed by UDP
and IP headers. If the outer IP packet size is more than the MTU of the link be-
tween the endpoints, necessary fragmentation shall be done (currently not supported).

GTPv1-U receiving endpoint: Receiving endpoint shall reassemble all frag-
ments to form a complete IP packet (reassembling not supported currently). Then,
necessary decapsulation needs to be carried out to extract the inner IP packet by
removing the outer IP, UDP and GTP headers. (GTP listens for incoming traffic on
port 2152).

GTP-U header: The GTP-U header is a variable-length header with a minimum
length of 8 B (refer Figure 3.1 for the format of a GTP-U header).

Bits
Octets 8 7 6 5 4 3 2 1
1 Version | PT] (| E | S |PN
2 Message Type
3 Length (15t Octet)
4 Length (2nd Octet)
5 Tunnel Endpoint Identifier (1st Octet)
6 Tunnel Endpoint Identifier (2nd Octet)
7 Tunnel Endpoint Identifier (379 Octet)
8 Tunnel Endpoint Identifier (4th Octet)
9 Sequence Number (15t Octet)1)4)
10 Sequence Number (24 Octet)1) 4)
11 N-PDU Number2'4)
12 Next Extension Header Type3'4)

Figure 3.1: GTP header!

IFigure taken from [12]

o Tunnel Endpoint Identifier: Identifies TEID at the receiving GTP endpoint.

o« Next Extension Header Type: States the type of GTP extension header.
It is interpreted only if the E flag is set in the GTP header. The UPF uses the

PDU Session Container type extension header.

Bits

s18190 JO
Jaquiny

ey

PDU Type (=1) Spare

—_

QoS Flow Identifier
Spare

Padding 0-3

Figure 3.2: UL PDU session container?

GTP-U extension header: The GTP-U extension header is a variable-length
header with a minimum length of 4 B. GTP extension headers are linked (one
after another if more than one) to the end of the main GTP header. In the current
implementation, UL PDU Session Container is appended to the GTP header for up-
link packets and DL PDU Session Container for downlink packets. Figures 3.2 and
3.3 show the two headers respectively. The extension headers contain the QoS Flow
Identifier (QFI) field, which is used to differentiate QoS flows and enforce QERs to
the incoming packets. Chapter 5 discusses QFT in details.

Bits o=

c

93

o o

7 6 5 4 3 2 1 0 s g
PDU Type (=0) Spare 1
PPP RQl QoS Flow Identifier y

PPI Spare Oori1

Padding 0-3

Figure 3.3: DL PDU session container?

2Figure taken from [14]
3Figure taken from [14]

3.3.2 Packet Processing

Packet Detection Rules (PDR) are added during the PFCP Session Establishment
or Modification procedure. Each PDR will have a Packet Detection Information
(PDI) against which incoming packets will be matched. Only the source interface is a
mandatory PDI field. All other fields are optional and implementation-specific. For
uplink packets, optional PDI fields include the UE IP (i.e., inner IP source address),
GTP-TEID and the QoS Flow Identifier (QFI). For downlink packets, only UE IP
(IP destination address) is included currently. Packets matching the PDI will follow
the Forwarding Action Rule (FAR) and the QoS Enforcement Rule (QER) stated in
the PDR. A FAR has an “apply action” parameter, indicating whether a packet is to
be forwarded /buffered /dropped. QER limits the maximum outgoing rate per session
by specifying an Aggregate Maximum Bit Rate (AMBR).

Figure 3.4 shows the packet processing pipeline/sequence for an incoming packet at
the UPF (URR is not currently supported). Once a UPF receives a packet, it will
perform a session-wise lookup of the PDRs, in the decreasing order of PDR precedence
within a PFCP session. The UPF will stop once a matching PDR is found (that is,
only the highest precedence PDR shall be selected). A packet matches a PDR if all
the fields in the corresponding PDI matches with the packet header fields. If a packet
does not match any of the PDRs, it will be silently discarded.

PFCP

PFCP session’s

Session look PDR(:t_)t:jk up PDR | FARs ‘ | QERs H URRs |
ul n
PacketIn | (fina PP [+ matching / [Packet Out

session with PDR of the Apply Instructions set in the
a matching PFCP session matching PDR

PDR) with highest

precedence)

Figure 3.4: DP Packet processing pipeline?

For instance, suppose that the following 2 PDRs are installed for a particular
session (assuming only 1 session).

PDR-1: Src iface: Acciss, G-TEID: X, (Src) IP: <UE_IP1>, QFI: Y,
Remove GTP header, Run FAR-1

FAR-1: Dest iface: CORE, Action: FORW

QER-1: SEID: S1, AMBR: R1

PDR-2: Src iface: Accgss, G-TEID: X, (Src) IP: <UE_IP2>, Run FAR-2

FAR-2: Dest iface: CORE, Action: BUFF

QER-2: SEID: S2, AMBR: R2

So, when a packet arrives at the UPF, PDR-1 will be checked first (assuming
PDR-1 has higher precedence than PDR-2). If it matches, FAR-1 and QER-1 will be
executed. Otherwise, PDR-2 will be checked. If the packet does not match any of
the PDRs, it will be dropped.

1Figure taken from [13]

3.3.3 End to end data transfer

Session SMF
setup

via @Add Rules
TUN
RAN UPF-C | UPF-U |——— DNN

TUN
GTP

IP | UDP | Data tunnel IP packet

‘ |

LS”:UE'P LSrc:UEIP

Dest: DNN IP | GTP | IP packet GTP | IP packet Dest: DNN IP
L Src: RAN IP LSrc: UE IP
Dest: UPF IP Dest: DNN IP

@ Actual data transfer

Figure 3.5: DP implementation in 5G test-bed

In the kernel-based implementation in the 5G test-bed, the UE and the RAN (em-
ulator) are on the same machine. Hence, we use a TUN device there to mimic the
wireless connection between the UE and the RAN to get an IP packet at the RAN.
The UE thread in the system sends out a UDP packet to the DNN, which is re-routed
to the TUN device, from where the RAN thread reads the IP packet. It encapsulates
the packet with GTP using UPFs F-TEID and sends it out to the UPF. On receiving
the packet, the UPF decodes the GTP message and processes the packet based on
the previously set rules. Currently, only forwarding the packet to DNN is supported.
After packet processing is done, UPF is left with an IP packet. If it sends out the
packet via a normal UDP socket, another layer of IP/UDP headers will be added
to it by the kernel stack, which is not desired. Hence, here also, a TUN device is
used, which acts as a tunnel to send out the IP packet to the DNN. For this to work,
ip__forwarding should be enabled at the UPF. Figure 3.5 captures the DP packet flow.

For the reverse path from the DNN to a UE, the DNN has a packet with the
destination IP address as the UE IP address. As UE IP can be from another network,
the kernel will drop the packet in the DNN itself as the current setup does not have
any routers. So, we need to add a route stating that if the destination IP is that of
the UE, the kernel should forward it to the UPF. The UPF again uses the same TUN
device to get an IP packet from the kernel. It then processes the packet, adds a GTP
header with RAN F-TEID, and forwards it to the RAN, which does the necessary
processing before sending it to the UE thread.

3.4 Kernel based UPF limitations

Although the design is functionally correct, it can reach only up to 1.80 Gbps in
uplink and 1.77 Gbps in the downlink (QoS disabled). This is due to the following

limitations:

o« When a packet comes in the NIC, an interrupt is generated. The packet is
copied once in the kernel space and then copied again into the userspace. Mem-
ory is also allocated/deallocated per packet, and there are several system calls
(and hence, context switching overhead) involved from when the NIC receives
a packet to when it finally reaches the application and vice versa. All these fac-
tors increase the packet processing latency as well as decrease the throughput.
For large packets, although the copying overhead is not noticed, other factors
are still there.

e The TUN device used between the UPF and the DNN also becomes a bottleneck
at high I/0 rate, as it involves multiple packet copies both in the kernel and in
the userspace.

Top Hotspots

This section lists the most active functions in your application. Optimizing these
hotspot functions typically results in improving overall application performance.

Function Module CPU Time

upf::recFromRAN UPF 21.005s
__libc_write libpthread.so0.0 10.025s
upf::dataPlaneThread_Handler UPF 8.389s
OS_BARESYSCALL_DoCallAsmintel64Linux libc-dynamic.so 6.388s
__Gl__ pall libc.so.6 4.675s

Figure 3.6: Kernel UPF bottlenecks®

Figure 3.6 shows the functions which took the maximum CPU time in the UPF. Out of
the 69.010 secs elapsed time, recFromRAN (underlying function: __ libc_recvfrom),
which receives packets from the kernel, took the most time (21.005 secs, which equates
to 30.44% of CPU time), while __ libc_write used to write packets into the TUN de-
vice took the second most time (10.025 secs, which equates to 14.53% of CPU time).

To further prove that the kernel is indeed the bottleneck and not the userspace
UPF function, the UPF is modified to forward any incoming packets from RAN
without any processing. Only the data offset pointer is moved so that the inner packet
is sent to the DNN. Figure 3.7 shows the top 20 hotspots in this situation, where all
but one are kernel functions (profiling done using perf tool). This application can
forward 1500 B packets at the rate of 0.2 Mpps (equating to 2.4 Gbps), which is still
well short of the 10 Gbps line rate.

SProfiling was done using Intel vTune Amplifier

10

To display the perf.data header info, please use --header/--header-only options.
#
#
Total Lost Samples: @
#
Samples: 144K of event 'cycles’
Event count (approx.): 89898681224
#
Overhead CPU Command shared Object Symbol
Foiiiieans ten seesaasesEsaaes Siastesisabesasdsabiaitantiiasiasd besasdsebientanbiiatiastiabeanannttan
#
16.39% 003 UPF [kernel.kallsyms] [k] do_syscall_64
6.66% 003 UPF [kernel.kallsyms] [k] entry_SYSCALL_64
5.43% 003 UPF [kernel.kallsyms] [k] syscall_return_via_sysret
3.82% 003 UPF [kernel.kallsyms] [k] fib_table_lookup
2.97% 003 UPF [kernel.kallsyms] [k] _raw_spin_lock
2.17% 003 UPF UPF [.] upf::gtp_socket_Handler
1.70% 003 UPF [kernel.kallsyms] [k] copy_user_enhanced_fast_string
1.43% 003 UPF [kernel.kallsyms] [k] __fget
1.14% 003 UPF [kernel.kallsyms] [k] __slab_free
1.13% 003 UPF [kernel.kallsyms] [k] read_tsc
1.08% 003 UPF [kernel.kallsyms] [k] ixgbe_clean_rx_irq
1.85% 003 UPF [kernel.kallsyms] [k] ip_route_input_slow
0.91% 003 UPF [kernel.kallsyms] [k] ixgbe_xmit_frame_ring
0.90% 003 UPF [kernel.kallsyms] [k] ep_send_events_proc
0.87% 003 UPF [kernel.kallsyms] [k] tun_chr_write_iter
0.87% 003 UPF [kernel.kallsyms] [k] tun_get_user
0.87% 003 UPF [kernel.kallsyms] [k] __netif_receive_skb_core
0.85% 003 UPF [kernel.kallsyms] [k] entry SYSCALL_64_after_hwframe
0.82% 003 UPF [kernel.kallsyms] [k] memset_erms
0.69% 003 UPF [kernel.kallsyms] [k] udp_v4_early_demux

Figure 3.7: Kernel UPF profiling®

Figure 3.8 expands the top 3 hotspots (the cumulative values are slightly different
from Figure 3.7 as perf was run a second time). Similar to Figure 3.6, __ libc_ write,

epoll _wait and libc__recvfrom take the most time.
To display the perf.data header info, please use --header/--header-only options.
#
#
Total Lost Samples: ©
#
samples: 145K of event 'cycles
Event count (approx.): 89653380365
#
Overhead CPU Command Shared Object Symbol
O
#
16.65% 003 UPF [kernel.kallsyms] [k] do_syscall_&4

---do_syscall_64
I
--16.59%--entry_SYSCALL_64_after_hwframe
I

--5.65%--__ libc_write
0x100a8c0136d1140

I
|
|--5.51%- -epoll_wait
| 0x100000000
‘--5.43%--__libc_recvfrom
6.79% 083 UPF [kernel.kallsyms] [k] entry_SYSCALL_64
!——entry_SYSCALL_64
}--2.28%--epnll_wait
} ‘--2.2?%--0x100330030
}--2.2?%--4711bc7recvfrum
I

--2.23%--_ libc_write
0x100a8c0136d1140

5.45% 003 UPF [kernel.kallsyms] [k] syscall_return_via_sysret
---syscall_return_via_sysret

--1.88%--epoll_wait
6x1600000000

--1.80%--_ libc_write

I
|
I
|
I
| 0x100a8c0136d1140
I

--1.77%-- libc recvfrom

Figure 3.8: Kernel UPF detailed trace’

SProfiling done with perf
"Profiling done with perf

11

4. Optimizing the 5G Data Plane

4.1 Intel Data Plane Development Kit

Intel’s Data Plane Development Kit (DPDK) [1] is a framework that consists of li-
braries for processing packets very fast in data plane applications by bypassing the
kernel processing stack and allowing applications to process Layer-2 packets in the
userspace. DPDK [1] creates an Environmental Abstraction Layer (EAL) that hides
the environment and architecture related complexities from the application and pro-
vides services (APIs) to the application for configuring NIC ports and queues, memory
management, core affinity procedures etc. quickly and flexibly. NIC ports need to
be bound to DPDK [1] before running an application. Once a NIC port is bound
to DPDK [1], it is not visible to the kernel, and standard kernel-based networking
applications cannot run on that particular NIC port.

Instead of traditional 4K pages, DPDK [1] needs hugepages (usually 2MB) to
be reserved by the system. Hugepages are required for increased performance, as
large page size means fewer pages will be needed and thus less TLB misses. Also,
hugepages can support a larger memory pool to be used by DPDK [1] packet buffers
(A fixed memory pool is pre-initialized from which the buffers are allocated, instead
of allocating memory every time a packet is received). Figure 4.1 highlights the essen-
tial libraries provided by DPDK [1] for achieving high performance in I/O intensive
applications.

o rte__eal: Provides the Environmental Abstraction Layer.

o rte__mempool: [2] Allocator of a pool of fixed-sized objects. A mempool
handler stores the objects, which is by default a ring (circular queue).

« rte__mbuf: [3] Uses the mempool library to allocate and free buffers (mbufs).
These buffers are used by the DPDK application to store incoming/outgoing
packets.

» rte_ring: [4] It is a FIFO, lockless, multi-producer and multi-consumer data
structure, enabling fast transfer of packets across different cores.

« rte__hash: [5] DPDK provides an optimized hash library for fast data lookup,
update and delete.

Poll Mode Drivers (PMD) are userspace drivers in DPDK continuously polling the
NIC for any incoming packets, thus preventing the need of per packet interrupts as
in the case of kernel TCP/IP stack. DPDK applications can use the APIs provided
by the DPDK libraries without any system calls, thus having no overhead of context
switching associated with syscalls.

12

Manipulation of packet

buffers carrying network
X—> Y data.
Xuses Y
Handle a pool of objects
using a ring to store rte_mbuf
them. Allow bulk

Timer facilities. Based enqueue/dequeue and
on HPET interface that per-CPU cacke.
is provided by EAL.
rte_ring
[(T rte_mempool
Fixed-size lockless
FIFO for storing objects

) e in a table.
[rte_malloc rte_eal + libc
J .
Allocation of named Environment abstraction
Memory zones using layer: RTE loading, memory rte_debug
libc's malloc() allocation, time reference,

BCI access, logging Provides debug helpers

Figure 4.1: DPDK core components'

4.2 Kernel bypass design

The following subsections elaborate on how the DPDK-based UPF is designed and
implemented. Although the title reads kernel bypass design, the TCP/IP stack of the
kernel is still used for processing infrequent packets as well as for processing packets
whose headers are complex (e.g., HT'TP running over TCP), as can be seen below.
However, there is scope in the future to shift processing of such packets also to the
userspace, to bypass the kernel entirely.

4.2.1 ARP request and response

The UPF needs to register with the NRF as a part of the publish-subscribe model,
wherein the UPF publishes that it is available as an NF and other NFs can subscribe
to its services. However, before registration, the UPF needs to know where the other
NFs are (NRF, SMF, RAN and DNN). So, it sends broadcast ARP requests for all the
said NFs (except SMF) and updates its ARP table locally. Since the kernel TCP /IP
stack is bypassed, ARP requests and responses need to be processed in the userspace.
Also, as the SMF itself contacts the UPF during session setup, the UPF does not
proactively send ARP requests to the SMF. Instead, when SMF broadcasts an ARP
message to find the UPF, the UPF sends an appropriate reply and updates its ARP
table.

The DPDK-based UPF has 2 ARP threads running on a dedicated core to handle

'Figure taken from [1]

13

ARP requests and responses respectively. Once an ARP message is received, the
receiving core redirects the message to one of the threads (based on the message
type) via s/w rings. For incoming ARP requests, the request-handling thread crafts
an ARP reply and sends it out. Otherwise, the UPF has received an ARP reply for
a request that itself had sent out, and so updates the ARP table. The ARP message
processing threads keep on running in the background for the entire lifetime of the
UPF to handle any future ARP request or responses (for example, gratuitous ARP
messages).

4.2.2 Registering with NRF

The UPF sends an HTTP registration request to the NRF. Since processing TCP
headers is much more complicated than UDP headers and these type of messages
only appear at the start and once in every 100 seconds after that (as heartbeat mes-
sages), we let the kernel TCP/IP stack handle processing of those messages. We
use a TUN device for redirecting the packets between the userspace and the kernel.
As these messages are very few, it does not hamper performance of any kind, while
taking care of the complexities associated with handling TCP headers (for instance,
checking for correct sequence numbers, handling packet re-transmissions etc.). The
TUN device is created when the UPF starts up, before the registration process begins.

When the UPF sends an HTTP registration request, as the NIC is already bound
to DPDK, the message cannot go out after TCP/IP processing by the kernel stack.
So, we reroute the packet to the TUN device after the kernel adds the TCP and IP
headers, and read the packet from the TUN device in the userspace. Then, we add
the Ethernet header and send it out with the help of APIs provided by DPDK. The
MAC of NRF is read from the ARP table and put as the destination MAC in the
Layer-2 header. On receiving a reply from the NRF, DPDK hands over a Layer-2
packet to the userspace for processing. We discard the Ethernet header and write the
IP packet into the TUN device, which redirects the packet back to the kernel. Thus,
the kernel processes the IP and TCP headers before our UPF application gets the
HTTP response and act accordingly.

4.2.3 Handling Control Plane Messages

When a UDP packet is received in the userspace, it processes the UDP header to
see the destination port field. Control Plane (CP) packets will have destination port
as 8805, which is the dedicated PFCP port. All such packets are enqueued into a
software ring dedicated to inter-core communication between the receiving core and
the CP core. The CP core continuously checks whether there is a packet in the
software ring and dequeues any such packet. Outer (L2-L4) headers are discarded so
that now we have a PFCP packet. Peer information is collected from and saved for
each such packet (that is, a unique peer token along with the IP and UDP port of
the SMF which sent this message). This information is looked up while sending a
corresponding reply so that the reply reaches the correct SMF.

Once peer information is saved, the PFCP message is decoded to see if it is a
node related message or a session related message. Node related messages include
PFCP association setup/update/release, while session-related messages include ses-
sion establishment, modification, or deletion messages. A detailed description of node
and session related PFCP messages is already provided in Section 3.2. If the PFCP

14

message is a PFCP association setup request from the SMF (currently, only this is
supported), the CP core extracts the necessary Information Elements (IE) from the
message and triggers a PFCP association setup response where a PFCP reply message
is crafted. Since the kernel is bypassed, the CP core creates and adds the Ethernet,
IP and UDP headers, with correct information from the peer token in the userspace
itself, and sends the packet out via APIs provide by DPDK. The destination MAC
address in the Ethernet header is that of SMF, which is read from the ARP table.
For session establishment, update and modification messages, first the session ID
(SEID) is extracted from the PFCP header. If it does not match any existing session
ids and the message is not a session establishment message, the packet is discarded.
Otherwise, based on session id and message type, PFCP IE is extracted, and reply
messages are crafted and sent out like the PFCP association response message. Figure
4.2 shows the CP packet handling flow.

(Discard L2-L4 headers]

[) DP packet

3
Save <peer_token, SMF Ve AN towards DP
info> 1 core
! CP
Decode PFCP message] packet
Master

' Core
Check if Session (* Check SEID
node/sesn and message

type

DPDK
Extract IE &
trigger reply

NIC

Create and add L2-L4
[heaglers CP core I Rx

k Send out to
SMF

Figure 4.2: Control Plane packet flow?

Current DPDK-based implementation only has one core dedicated to handling
control plane messages as they are few and far between (in the current design, control
plane messages are passed between UPF and SMF only during session establishment
and later if we want to tear down a PDU session). However, the number of dedicated
Control plane cores can be increased easily with the DPDK-based design if and when
required.

4.2.4 Designing the Data Plane

The current DPDK based UPF supports both the Run-to-completion (RTC) as well
as the Pipeline based design for the data plane.

« Run-to-Completion (RTC) design: In RTC, each core receives a batch of
packets from the NIC. Once received in the userspace, the core processes the
batch of packets and sends them out. Only then the next batch of packets are

2PFCP encode/decode, IE check and crafting PFCP reply are done by the project engineers.

15

polled from the NIC and brought into the userspace. Scaling to multiple cores is
easy. The same code should be launched on multiple cores, each core polling on
a different RX queue of the NIC and transmitting via different TX queues for
maximum performance. Since packets should be already distributed to differ-
ent cores before they reach the userspace, h/w (NIC) support is required. More
precisely, RSS should be applied on the packets in the NIC itself to redirect the
packets to separate cores. For downlink packets, the RSS hash is on the IP des-
tination address (i.e., the UE IP). For the uplink, currently, the hash function
is applied on the outer UDP header. It is assumed (and implemented in RAN)
that the source port of the outer UDP header is different for different UEs.
Ideally, fields from the GTP or the inner IP header should be taken. However,
the outer UDP header is considered as the NIC used in the experiments does
not support RSS hash on GTP /inner headers. Outer IP source/destination ad-
dress will be the same for all incoming packets in the UPF (source = RAN IP,
destination = UPF IP) due to the GTP tunnelling used. Hence, the outer IP
header cannot be considered for RSS. Figure 4.3 shows the RTC design with an
uplink packet.

Core 1

Extract info,
Match rules, Core 2 Core n
Process hdr

A i

1 1

1 1

1 1

Y Ly

DPDK

[i

! 1

! 1

RSS ! !

| Ethemet | 1P | uDP IMEr | UDP-+data RN
TXQ_1 RXQ_1 NIC RXQ_n TXQ_n

{ ;

Figure 4.3: DPDK RTC design

« Pipeline design: In this design, a set of cores (henceforth called master cores)
receive packets from the NIC. Once the packets are in the userspace, the master
cores redirect the packets to a set of worker cores for processing via s/w rings
provided by DPDK. This enables the master cores to receive more packets while
the worker cores are processing the packets and transmitting them out. The
design can be made so that the worker cores can themselves use s/w rings to
transfer packets to another set of worker cores if the processing itself has multi-
ple stages (can be visualised as stages of a pipeline). The bottleneck then is the
slowest stage of pipeline processing. Apart from being able to poll continuously,
another advantage is that no h/w support is required in this design. Although
RSS on NIC is preferable, RSS can be done in the userspace itself if the NIC

16

does not support so. However, enqueuing and dequeuing from the rings incur an
extra overhead not present in the RT'C model, and this overhead is significant
especially if the enqueue/dequeue is done for individual packets instead of in
batches.

The current pipeline based design uses s/w based RSS once packets are received
in the userspace. For uplink packets, the inner IP source address (i.e., the UE
IP) is used to redirect packets to worker cores. For downlink packets, the TP
destination address (again, the UE IP) is used for the same purpose. One point
to note is that in the pipeline design, both h/w and s/w based RSS can also be
used together when there are n master cores. This is to further divide a set of
UEs received in a master core and redirect each such subset to different worker
cores. Figure 4.4 shows the pipeline design with an uplink packet.

Choose core
based on Inner IP
src addr

Inner

| Ethernet UDP-+data

P | ubpP | GTP

Extract info,
Master \Ic\:lg:l:;r Match rules,
Core Process hdr
T Worker Core n ‘
DPDK
TXQ_0 RXQ_0 NIC RXQ_n TXQ_n

X l

Figure 4.4: DPDK pipeline design

4.2.5 Handling Data Plane Messages

The current setup has the UPF machine connected to the RAN machine via 1 NIC
port and to the DNN machine via another port of the same NIC. (In this report, the
terms NIC port and NIC interface are used interchangeably). So, another CPU core
(let us call it DNN core) is required in the UPF for receiving downlink Data Plane
(DP) packets from the DNN, along with the master core, which receives uplink DP
packets from the RAN. The DPDK API to receive packets (rte__eth__rx__burst())
maps to a (NIC port, NIC' RX queue) pair and requires a whole CPU core to itself as
it is continuously polling the NIC port. Performance is degraded if a core is shared
between 2 such APIs, even if they are on separate threads (here, we need two calls
because 2 NIC ports are being polled simultaneously). Hence, the design includes an
additional dedicated CPU core.

17

In the RTC based design, once a core receives a packet, it needs to be seen
whether the packet has correct checksum before proceeding with anything else. Since
checksum verification is offloaded to the NIC, when a packet is received in the
userspace, the packet metadata has information on the IP and UDP (wherever appli-
cable) checksums. If the checksums are wrong, the packet is discarded. Otherwise,
it is processed. One advantage of using the 2 NIC-port setup is that in the RTC
design, the receiving core can determine whether the packet is an uplink/downlink
packet without any hassle, based on the NIC it is polling. Thus, no further checks
are required after checksum verification.

e Processing Uplink Packets:

If the packet is an uplink packet, it will be a GTP packet. So, we extract
Packet Detection Information (PDI) from the GTP and the inner IP headers.
PDI is information embedded both in the packet and the PDR. A packet match-
ing a PDR means that the PDI of the packet is the same as the PDI of that
particular PDR. PDI fields are the GTP tunnel identifier (TEID), the source IP
address in the inner IP header (i.e., UE IP), QoS Flow Identifier (QFI) and the
source interface, that is, the interface from which the packet is coming. Source
interface will be AccEss if the packet comes from RAN (access network), and
CORE if it is coming from another UPF (5G core network). The current imple-
mentation supports only 1 UPF, so an uplink packet always has source interface
as Accgess. Once PDI is obtained for a packet, it will be matched against a
set of PDRs. On finding a match, corresponding FAR and QER are obtained,
and the packet is processed accordingly. The procedure is already shown in
Figure 3.4 while describing the kernel-based implementation. For GTP packets
(as per current implementation), GTP header should be removed, and the inner
IP packet should be forwarded to the DNN by adding an Ethernet header to
it. Note that no TUN device is required here. If no PDR is matched, or for a
particular PDR there is no matching FAR, the packet is silently discarded.

e Processing Downlink Packets:

For downlink packets also, we first extract the PDI. The only PDI field in
the downlink packets is the destination IP address (i.e., UE IP). Packets coming
from the DNN will not have GTP header. So, TEID and QFT fields are absent.
Here, source interface will always be CORE irrespective of whether it is coming
from the DNN or another UPF. The PDI is matched against a set of PDRs, and
corresponding FAR and QER is applied on the packet (again, silently discarded
if no match is found). For downlink packets coming from DNN, FAR includes
creating an outer GTP header and sending the packet to RAN in the current
implementation. GTP header for downlink packets also has a GTP extension
header appended to it, within which the QFI obtained from the matched PDR
is encapsulated. This QFI value is propagated to the UE via the RAN.

Figure 4.5 shows how a downlink packet is processed in the DPDK-based de-
sign. The FAR obtained tells to create a GTP header with TEID equal to
the RAN side TEID. Then, the outer IP and UDP headers are created and
added in the userspace itself. Initially, the UDP checksum is 0, which is then
calculated from the pseudo (outer) IP header, the UDP header and the outer
UDP payload (GTP header + inner IP packet). Since the UDP payload can
be huge, calculating checksum trivially can become a bottleneck and hinder
performance. Hence, the checksum calculation has been offloaded to the NIC.
Finally, the Ethernet header is added to the packet before sending out to the

18

RAN via DPDK.

Ethernet IP Packet ‘

Discard L2 header 1. Extract PDI
2. Match PDR
3. Apply FAR
IP Packet » GTP | IP Packet
Add GTP header
Add IP & UDP header
(UDP checksum = Q)
Add Ethernet IP | UDP | GTP IP Packet

header

A

Ethernet | IP | UDP | GTP IP Packet

QoS rate
limiting
DPDK
+ Checksum calculation
NIC offloaded to NIC
l X

Figure 4.5: Downlink packet processing

In the pipeline based design, the master core checks the destination port field
of the outer UDP header and sends it to 1 of the n worker cores dedicated to han-
dling DP messages if the port number is 2152 (which is the dedicated GTP port).
The DNN core checks if the packet is addressed to a UE before redirecting the packet
to a worker core. The current design has one software ring per worker core, for inter-
core communication between that core and the receiving core. The master/DNN core
distributes the packets to each of the n worker cores based on the UE IP so that all
packets from a UE are redirected to the same DP core. On receiving a DP packet,
each worker core verifies the packet checksum (using information from the packet
metadata) and discards the packet if the checksum is invalid. Otherwise, the packet
is processed. Since a worker core can receive packets from both the master and the
DNN core, it has to additionally check whether the packet is an uplink or a downlink
packet by checking the source IP address — uplink packets will have source address
equal to the RAN IP while downlink packets will have that equal to the DNN IP —
and handles it accordingly. After the type of packet has been determined, processing
the packet is exactly same as in the RTC design, as enumerated above. Figure 4.6
shows a simplified flow for the DP packets in the pipeline design (DP core = Worker
core).

19

CP DP 7 | ¢ DNN ® RAN
packet packet L) P P
e | N
\/ [ExtractPDl | [ExwactPDl |
Master/DNN N l l
Core [Match PDR] [Match PDR]
! !
[[Add GTP header J [Remove GTP J
l header
DPDK l
T [Add L2-L4 header] [Add L2 header J
NIC DP Core ‘
T Rx
to RAN to DNN

Figure 4.6: Data Plane packet flow in pipeline design

The current implementation does not create a new packet for forwarding. In-
stead, in both the designs, it manipulates the packet received from the RAN/DNN
by changing its metadata and data-offset pointer (refer Figure 4.7) to overwrite the
original contents of the packet with new headers in the packet headroom. As a result,
the packet copying overhead is removed, which improves the performance.

data_offset data_offset
U, VO \
Metadata Headroom || Ethernet | IP | UDP | GTP Inner 1P ;DPDK
Packet :
___ packet
copy
Metadata Headroom Ethernet Inner 1P DPDK
Packet | packet
”””””””””””””””””””””””””””””” / Ty
data_offset data_offset

Figure 4.7: Reusing received packet

In both the designs, once the required packet is crafted, QoS is enforced on it, and
it is sent to the transmit queue of the corresponding NIC port via rte__eth__tx_burst()
API provided by DPDK from where the NIC can send it out (rate-limiting and QoS
are discussed in detail in Section 5.2). There is an one-to-one mapping between the
DP cores and the TX queues of the NIC, that is, DP core number ¢ sends the packet
to the " transmit queue of the NIC port, as shown in Figure 4.8. This 1 : 1 mapping
enables multiple cores to write into the TX queues of the NIC port concurrently with-
out requiring any locks and allows both the designs to scale well with the increasing

20

number of cores without degrading packet forwarding performance.

DP DP DP
Core 1 Core 2 Core N

DPDK

T™XQ1 ™>Q 2 TXQ N
NIC

Figure 4.8: Core to TX queue mapping

4.3 Challenges

4.3.1 Design Choices

Following are the design and implementation choices that were taken while developing

the DPDK-based UPF:

 Run-to-completion vs. pipelining model:

DPDK applications can either be designed as a run-to-completion (RTC)
model or as a pipelined model, as described in Section 4.2.5.
While choosing a specific design will depend on the type of application or work-
load, table 4.1 summarises the pros and cons of each design to help developers
choose the correct design as per requirement. Both the designs are easily scal-
able. In RTC, h/w support (for example, RSS on NIC) is necessary to receive
packets in multiple RX queues of the NIC. There are no such restrictions in the
pipeline design. If there is no RSS support on NIC, then one master core can
receive the packets and distribute them to the worker cores in the userspace.
However, the pipeline design has an extra overhead of en-queuing to and de-
queuing from s/w rings.
Additionally, in the pipeline design, m master cores receive the packets while
n worker cores process them. In contrast, RTC can use all the m + n cores to
both receive and process packets. However, if packet processing is CPU inten-
sive, RTC may receive a less number of packets because the time to process
packets has now increased, which may lead to decreased per UE performance.
For example, say RSS is used at the NIC level, and 2 UEs are redirected to the
same CPU core, which can process packets at the rate of = Mpps (and hence,
receive at the same rate). Assuming uniform distribution between the 2 UEs,
RTC design can now process 5 Mpps per UE. On the other hand, the pipeline

21

model has provision to further redirect the packets in the userspace and can
distribute packets from these 2 UEs to 2 separate worker cores. As a result,
both receiving and processing capability of the UPF (on a per UE basis) will
be more than that of the RTC design, since each worker core can separately
process x Mpps.

RTC Pipeline
Pros

1. Easily scalable. 1. Easily scalable.

2. Less wuserspace processing 2. No h/w support needed to
overhead. Throughput ex- distribute packets to other
pected to be higher. cores.

Cons

1. H/W support needed (eg. 1. More userspace processing
for RSS) overhead (ring enqueue-

2. Overall (per UE) perfor- dequeue, s/w RSS).
mance may decrease if pro- 2. More cores needed over-
cessing is CPU intensive. all (m master + n worker

cores).

Table 4.1: RTC vs Pipeline design — pros and cons

o Optimizing packet processing for multiple sessions:

Since millions of UEs can send data simultaneously, with each UE having
at least 1 PDU session, the packet processing algorithm needs to be designed
carefully. The brute force design is that for each incoming packet, we traverse
all sessions to fetch the correct one for a particular UE, and all PDRs within
that session to get the correct PDR. This is an O(nm) algorithm (n = no. of
sessions, m = no. of PDRs in a session). As a result, performance will keep on
decreasing as the no. of sessions (or, no. of PDRs in a session) increase and
packet processing will become the bottleneck.

The next few lines talk about a better algorithm that is implemented currently,
to prevent the above scenario. When sessions are established or modified, we
keep a <PDI, SEID> hashmap, where SEID is the unique identifier for any
session and PDI is information obtained from any PDR installed in that ses-
sion. Thus, if a session has 10 PDRs, there will be 10 <PDI, SEID> entries in
the map with the same SEID. PDIs are unique both within and across sessions
since 3G PP specification mentions that all PDRs should be non-overlapping,
i.e., there will not be 2 PDIs having all fields same. Section 3.3.2 has details on
the fields of a PDI. Thus, it can act as the key in the hashmap. Entries in this
map are updated/deleted if any PDR is updated/deleted.

When the first packet for any particular UE (/session) arrives at the UPF, the
above hashmap is searched with the packet PDI. As the packet PDI for any

22

legitimate packet must match the PDR’s PDI, we get the correct SEID in O(1).
A packet not matching with any of the PDIs in the hashmap implies that the
packet does not belong to any of the already established/active sessions. Such
packets are discarded immediately. Once SEID is found, all PDRs in that ses-
sion are traversed to get the exact PDR with which this packet matched along
with the corresponding FAR and QER. This information is then stored in a
new hashmap with PDI as the key, and a structure containing all the relevant
information as the value. In the current implementation, the structure contains
PDR, FAR, QER, SEID and the Latest Timestamp (LTS) for any packet in that
particular session (Section 5.1 gives details about LTS). Currently, the PDIs are
an exact match as there are no wildcard fields. However, later when wildcards
will be introduced (for example, PDR’s PDI field is a range of IP addresses
and any packet PDI having IP within this range is considered a match), the
algorithm and data structures need to be modified accordingly.

From the second packet onwards, this second hashmap is searched instead of
traversing through all the PDRs every time. Thus, relevant FAR, QERs and
other details are also obtained in O(1), making the overall packet processing
time complexity O(1). Hence, packet processing is now independent of the no.
of sessions or the no. of PDRs in a session, and the UPF performance will
not be affected even with millions of sessions. This hashmap is also updated
when any session is modified (for example, modifying a PDR in that session),
or released.

Figure 4.9 represents a simplified view of the said algorithm.

Session s_k

Traverse all

—
! > rulesin a
session
UE k <PDI, s_k>
1st data packet
l Match

(PDR,
PDI FAR, QER,
! SEID, LTS)
UE k —_—
2nd data packet
onwards

Hashmap

Figure 4.9: CP packet handling design

« CP packet processing — TUN vs S/W Ring:
Since current implementation has CP messages only during PDU session es-
tablishment and teardown, a TUN device can be used to redirect those messages

23

to the kernel where the TCP /IP stack will process the headers, just like during
NRF registration. However, the current implementation uses the ring-based
design where CP packets are transferred to a dedicated core and are processed
in the userspace itself, bypassing the kernel. The ring-based design ensures
that the kernel/TUN does not become a bottleneck in scenarios in the future
where the number of CP messages may be comparable to the number of DP
messages, say in case of some IoT devices. The ring-based design can handle
such scenarios and scale up if required. Figure 4.10 shows the design options.

Master Core UPF-C UPF-U
Vad

AN | e
[A CP pkt CP pkt
CP pkt)/ ‘ N Kernel
DPDK DPDK
T VS T
CP core
NIC NIC

Figure 4.10: CP packet handling design

4.3.2 Scalability across NUMA nodes

Although the design is scalable across multiple cores, scaling across multiple NUMA
nodes may become an issue, because communication between memory region asso-
ciated with 1 NUMA node and the remote memory region associated with another
NUMA node becomes a bottleneck. One way is to disable the NUMA architecture,
but then the overall throughput in terms of packet forwarding rate is slower. Another
solution is to use two cores in different NUMA nodes for receiving incoming packets
and communicate only within the NUMA nodes, leaving inter-NUMA communication
to a minimum. Currently, these design choices are still being explored and will be
implemented if and when required.

4.3.3 Implementation challenges

Implementation challenges include learning to use the libraries and APIs provided
by DPDK, bugs while coding, compiler issues, bottlenecks due to un-optimized code
(removed via profiling), networking issues etc. Refer to Appendix A for a detailed
list of such issues.

24

5. Enforcing Quality of Service
(QoS)

QoS is an essential part of any real-life UPF. Users subscribe to different data plans
and based on that they may want different customised services like higher bandwidth,
guaranteed minimum speed even if the network is congested, and so on. Users paying
more subscription fees will demand a higher bit-rate while users paying less may be
satisfied with lower speeds.

As per 3G PP specifications, the 5G QoS model supports both QoS flows that are
capped at a specific bit-rate with no guaranteed minimum (Non-GBR) as well as flows
that require a guaranteed minimum bit-rate (GBR). The QoS flows are differentiated
by QoS Flow Identifier (QFI), which is unique within a PDU session. GBR and non-
GBR flows have different QFIs. The QFTI is encapsulated within the GTP extension
header. Within a session, any UE packet with the same QFI receives the same QoS
treatment. Any PDU session will have a QoS flow associated with the default QoS
rule established throughout the session, which limits the aggregated maximum bit-
rate within that session (Session-AMBR). This flow will be a non-GBR QoS flow.
The current UPF implementation only supports one non-GBR flow which follows the
default QoS Enforcement Rule (QER) for the session (1 QER for uplink packets, 1
for downlink packets). Of course, different UEs (having different sessions) will have
separate QERs.

5.1 State of the art QoS

Usually, QoS implementations have one queue per flow for rate limiting. For each flow,
if the incoming rate in the UPF is less than the allowed outgoing bitrate, packets are
transmitted instantaneously. Otherwise, packets are queued and transmitted over
a period, which allows the UPF to limit the rate for that particular flow. If the
incoming rate is such that this queue becomes full, then further packets are dropped
by the UPF. The problem with this approach is that when there are millions of UEs
each having at least one QoS flow, millions of queues need to be traversed, which
causes a massive overhead. As a result, the UPF performance degrades so much so
that it cannot saturate the line rate. Saced Ahmed et al. in their paper Carousel [16]
propose a solution to this problem. Instead of millions of queues, they maintain only
one queue for all flows. Figure 5.1 shows a simple representation of the queue and
how the incoming packets are stored in it.

The paper uses certain terminologies, which are explained below for clarity:

o Timing Wheel (TW): The queue which stores the packets to enforce rate lim-
iting. Each element/index in this TW denotes a time slot. A list of packets
from different QoS flows is queued in each index of the TW. All packets in the
current time slot of the TW are dequeued (FIFO order) and sent out via the
NIC.

25

« Latest Timestamp (LTS): The time at which a certain packet needs to be de-
queued from the TW and sent out. If the length of the packet is denoted by
pkt__len and the outgoing rate limit (i.e., Session AMBR) is pkt_ rate, then

pkt_len

LTSnextht - LTScuert + (51)

pkt_rate

o Slot Granularity (G): It is the time range each slot represents.

o Horizon: The furthest time till which packets will be queued. Any packets with
LTS beyond the horizon are dropped. Hence,

Horizon

TW _slots =
+# _slots e

(5.2)

o Front Timespatmp (FTS): FTS denotes the current time slot in the TW. In-
creasing F'T'S by 1 means time has progressed by G units.

Current slot

— -

Incoming packets

I m g

- Flow 1 (from UE 1) Excess packets dropped

Flow 2 (from UE 2)
(Allowed bitrate = 2 * Flow1 bitrate)

Figure 5.1: Carousel architecture

In Carousel [16], packets are inserted in slot number (£52)%(#TW _slots), provided
LTS is between the F'T'S and the Horizon. For packets with LTS < FT'S, LTS is
set to F'T'S, i.e., they are inserted in the current slot. As shown in Figure 5.1, if a
QoS flow has outgoing bit-rate double that of another flow, the first flow will have
double the number of packets in the TW.

Packets are extracted every GG period, and the next slot becomes the current one.
The TW is a circular representation of time, i.e., once all packets are dequeued from
the slot and it becomes an older one, that particular slot now represents the time

(cur__time + Horizon).

5.2 QoS in the DPDK based UPF

The current QoS implementation in the UPF redirects all flows from a particular
UE to a single core via RSS, to ensure that the performance does not degrade due

26

to inter-core communication in order to maintain the rate limit for a particular UE
across cores. Of course, flows from 2 UEs may be directed to separate cores. Each
core has a separate TW and separate FTS values to decouple one core from another
and ensure scalability. Within a core, whenever a packet comes, it is assigned an LTS
value (after processing PDR and FAR rules) depending on the aggregated maximum
allowed bit-rate for that particular session/UE (session-AMBR). Once LTS is assigned
to a packet, the LTS is checked against the FTS for that core. If LTS <= FT'S, it
implies that the packet can be sent out immediately, and it is added to the current
slot of the TW to be sent out as a part of a batch next time extract() is called. In
the current implementation, extract() is called after every 32 packets, or periodically
every 100 us if no packets are coming. This periodical call ensures that any residual
packets in the TW are sent out as well as the FTS remains up-to-date with the cur-
rent time. Further details about extract() are explained later in this section.

If LTS > Horizon, where Horizon = FTS++#TW _slots, it means that the packet’s
transmission time is too far ahead in the future to be queued. This implies that the
incoming rate is too high and the sender (UE) should slow down its transmitting rate
as well as resend that particular packet, as the UPF drops these types of packets. If
for a packet LT'S > FT'S but within the Horizon, then such packets are queued and
sent out at the allowed outgoing rate.

When the extract function (extract()) is called, all packets in the current slot are
dequeued and sent out in a batch to the RAN or the DNN. If the F'TS is behind the
current time by at least G (slot granularity, explained in Section 5.1), then FTS is
updated to the current time. Sometimes, a particular slot in the TW can be full due
to too many packets being enqueued in that slot. If another packet comes which needs
to be inserted in the same slot, then the extract() is called with an URGENT flag
and the respective slot number. All packets in that particular slot are then dequeued
before inserting the new packet. As a result, there may be a slight rise in the outgoing
rate, which may overshoot the rate limit for an instant. This is because the packets
that were supposed to be sent at a particular time in the future (within the Horizon
value) are being sent at the current time. However, not emptying the slot would lead
to no room for newer packets, and the outgoing rate may be decreased for an instant
in the future. This is a trade-off, and future versions of the UPF QoS implementation
need to handle this and design a better algorithm.

27

6. Evaluation

6.1 Experimental Setup

Figure 6.1 shows the experimental setup. All three servers have 10G NICs and are
connected as shown. 1 NIC port of Server 2 is connected via a SFP cable to Server
1, and the other to Server 3. Server 2 hosts the UPF while Servers 1 and 3 host
the RAN and the DNN respectively. All other NFs, namely the AMF, SMF, NRF,
AUSF, UDM and UDR, are also on Server 1.

Server 1 Server 2 Server 3
(RAN) (UPF) (DNN)
NIC | { NIC {NIC

PORT PORT
_RAN _DNN

Figure 6.1: Experimental Setup

The server configurations are as follows:
« Intel Xeon(R) CPU E5 — 2650 v4 @ 2.20GHz (24 CPU cores)

e 128 GB RAM and 2 T'B HDD

« 10G NIC connected via cable (P2P)

8192 hugepages are allocated per NUMA node in Server 2 while loading DPDK.
Server 3 runs DNN over DPDK. It has two modes — sink and echo. In sink mode,
the DNN only receives packets and shows the throughput. In echo mode, the DNN
mirrors the received packets back to the UPF. Echo mode simulates duplex connec-
tion, where both uplink and downlink traffic is arriving at the UPF simultaneously.
In Server 1, the RAN is also DPDK-based. The DPDK-based RAN generates packets
of different payload sizes at different rates from multiple UEs, as and when required.

In Server 2, there is one master core which receives packets from the RAN and
another core which listens for packets coming from the DNN. One core is dedicated
to CP processing, one for other miscellaneous functions (TUN handling, Heartbeat
timer handling, ARP handling). The remaining cores can be used for processing
Data Plane packets in the pipeline design. In contrast, in the RTC design, the two
receiving cores themselves process DP packets and more cores receive (and process)
packets from other RX queues of the NICs when required.

28

6.2 Results

This section shows how the DPDK based UPF performs for different sized packets
in the uplink and downlink. It also shows how the UPF scales across cores, how
it performs in a multi-UE setup, and finally how both the DPDK based UPF de-
signs perform against other UPF designs. In essence, this section tries to answer the
following questions:

1. How does DPDK based UPF perform for different payloads? When is it satu-
rating the 10G line rate?

2. Are the designs (and implementations) scalable across cores?
3. How is the UPF performance affected with an increasing number of UEs/sessions?

4. Is QoS functioning correctly? How much overhead does the QoS implementation
add to the UPF?

5. How does DPDK based UPF fare against other UPFs?

6.2.1 Single core performance

All experiments in this section assume that the incoming rate is always less than
the session-AMBR (session-AMBR set to 10 Gbps). The aim is to determine the
maximum achievable performance of the UPF in such a scenario.

e Single UE throughput:
Figures 6.2 and 6.3 show the single-core uplink and downlink performance
of the DPDK based UPF for payloads of different sizes (single UE). Payloads
from 64 B to 1400 B are used for this experiment.

Throughput (Mpps, 1UE, 1 core)

A Pipeline-UL @ RTC-UL A Pipeline-DL @ RTC-DL

10G saturated

1.10,
e 0383

1.10

Packets Processed (Mpps)

64 128 256 512 1024 1400

Payload Size (B)

Figure 6.2: Single Core throughput (Mpps) for various payload sizes

Figure 6.2 shows how many packets are processed by the UPF per second.
More packets are processed in the uplink than in the downlink. This is because

29

downlink traffic has the additional overhead of creating and attaching 62 B
outer headers to each packet in the userspace (14 B Ethernet + 20 B IP +
8 B UDP + 8 B GTP + 12 B GTP extension header). The RTC design can
process a maximum of 5.17 Mpps in the uplink and 4.11 Mpps in the downlink.
In contrast, the pipeline design can process 3.51 Mpps and 2.89 Mpps in the
uplink and downlink, respectively. The reason why RTC performs better than
pipeline is discussed in section 6.2.6.1.

When data is sent simultaneously from both the RAN and the DNN (duplex
traffic), the pipeline design can process 3.17 Mpps, which is almost halfway
between purely uplink packet processing speed and purely downlink packet pro-
cessing speed (as expected). The RTC design, however, processes uplink and
downlink traffic on 2 separate cores due to the 2 NIC-port setup (1 port listening
to traffic from RAN, the other listening to traffic from DNN). As a result, its
processing speed is the aggregate of the uplink and downlink packet processing
capability of the UPF (9.25 Mpps).

Note that packet processing capability does not depend on the size of the pay-
load. This is because, for each packet, only the header fields are manipulated
(added/removed) while keeping the payload as it is. Each packet has a 128 B
headroom (empty by default) which is used if extra space is needed to add
a header, and the data offset is moved accordingly. Since header size is fixed
irrespective of the payload size, performance is the same across all payload sizes.

Figure 6.3 shows throughput in terms of Gbps. The RTC design saturates 10G
in both uplink and downlink from 256 B payload onwards. The pipeline design
saturates 10G for payload sizes >= 256 B in the uplink and >= 512 B in the
downlink.

Throughput (1 UE, 1 core)

B Pipeline - UL [Pipeline-DL [l RTC-UL [RTC-DL
) 979 979 9.84 9.84
10 934 935 962 9.62
8.51

Throughput (incl. hdrs, Gbps)

27 273

64 128 256 512 1024 1400

Payload Size (B)

Figure 6.3: Single Core throughput (Gbps) for various payload sizes

e Multiple UE throughput:

Figure 6.4 shows how both the designs perform when multiple UEs send
data simultaneously. For this experiment, 99000 sessions are established before
sending any data packets, with each session having 1 rule for uplink packets
and 1 rule for downlink packets. Once the sessions are established, the number

30

of active UEs sending data packets is increased from 1 to 16384 (= 21). As
shown, there is a negligible decrease in performance (~ 0.2 Mpps) even when
214 UEs are sending data simultaneously. Thus, both designs can scale with
multiple UEs/sessions.

MultiUE performance (1 core, 64B payload)

= Pipeline UL = Pipeline DL = RTCUL = RTCDL

5.16 5.14
_ 512 5.11 5.10 5.08 4.99 5.00
2 5
=
=} -
g 4.07 4.05 4.06 4.01 4.01 4.01 4.00 3.98
w
g 4
Q
E 3.5] 2.5, =511 1-4Q. 2-4% -4
& 3.51 351 3:51 3-4 348 38— 340 336
i
o 3
8
o 292 2.91 2.90 2.89 2.88 287 2.86 2.82
2
1 4 16 64 256 1024 4096 16384
No. of UEs

Figure 6.4: Performance with multiple UEs (Mpps)

6.2.2 Scalability with multiple cores

All experiments in this section also assume that the rate at which packets are coming
from the RAN is always less than the session-AMBR (session-AMBR set to 10 Gbps).

Multicore performance (Mpps)

B UL-Pipeline [DL-Pipeline [UL-RTC [l DL-RTC

8 719 7:19—7:19 7:19—7:19
6.79

Packets Processed (Mpps)

No. of Cores

Figure 6.5: Multicore performance (Mpps)

Figure 6.5 shows how both the designs perform with an increasing number of
packet processing cores.
Since the maximum possible processing rate in the 10 Gbps setup is 7.19 Mpps in

31

the uplink and 7.02 Mpps in the downlink, the RTC design easily saturates the line
rate with 2 cores. It may be argued that from the graph, it is inconclusive whether
the RTC design is scalable across cores. To say with certainty that the RTC design is

scalable, the experiment should be done in a more advanced setup (say, with 40 Gbps
NICs).

The pipeline design needed 3 processing (worker) cores to saturate the line rate.
Here, the scalability is almost linear with an increasing number of cores. The slight
decrease in the processing capability is because the worker cores themselves were
receiving less number of packets (3.5 Mpps received when there was 1 worker core,
3.4 Mpps received with 2). Future work in the direction of increasing the s/w ring
size or NIC RX-descriptor size may help to gain more insight into why the worker
cores were receiving less number of packets.

Figure 6.6 shows the throughput in terms of Gbps when the number of cores is
increased from 1 to 4. As stated earlier, the RTC design took 2 cores to saturate
10 Gbps, while the pipeline design needed 3 cores.

Multicore Performance (Gbps)

B UL-Pipeline [DL-Pipeline [l UL-RTC [l DL-RTC

=
o

8.62 862 8.62 862 8.62

[e-]

Throughput (incl hdr, Gbps)

No. of Cores

Figure 6.6: Multicore performance (Gbps)

6.2.3 Latency measurements

For all experiments in this section, the outgoing rate in the RAN (and hence the
incoming rate in the UPF) is kept at 90% of the maximum processing capability of
the UPF. Otherwise, latency increases due to queueing delays. The session-AMBR is
set to 10 Gbps.

For calculating latency, a callback function adds a timestamp value each time a packet
is received, and another callback function calculates the difference in timestamp when
that packet is being transmitted. Then, the following formula is used:

S (Timestamp_dif ference)
packets

Latency = (6.1)

32

| Payload (B) | RTC (us) | Pipeline (us)

64 8.69 14.90
512 14.15 18.03
1400 52.34 33.89

Table 6.1: Latency for uplink packets

Tables 6.1 and 6.2 show the latency for uplink and downlink packets respectively.
As expected, time taken to process downlink packets is slightly more than that of
uplink packets. Larger payload sizes also take slightly more time. In general, latency
of the RTC design is less when packet size is small. For larger packet sizes, the
pipeline design has lower latency. However, latency results will become more clear
and concrete once the experiments are done in a 40G NIC setup.

| Payload (B) | RTC (us) | Pipeline (us) |
64 12.66 34.44
512 16.75 17.94
1400 56.36 48.34

Table 6.2: Latency for downlink packets

6.2.4 QoS correctness

Figure 6.7 shows the timeline graph when packets are sent from a UE to the DNN. The
RAN sends out 1024 B payloads at different speeds, alternating between 800 Mbps
and 1200 Mbps (incl. headers) every 30 secs, while the session-AMBR (i.e., UPF
outgoing rate limit) is set at 1 Gbps. Both the RT'C and the pipeline design limit the
outgoing rate correctly — matching the incoming rate when it is less than 1 Gbps,
limiting the rate otherwise.

Uplink Single Core, Payload: 1024B, Rate Limit 1000 Mbps
= Ingress payload throughput == DPDK - pipeline == DPDK -RTC

1200

1100

&-v—. iy o M

400

Payload throughput(Mbps)

800

I L TP TV |
[oo aat i

a 100 200 300

700

Time (secs)

Figure 6.7: Time series graph showing rate limiting

Figure 6.8 shows the throughput when both uplink and downlink packets are
received at the UPF. The session-AMBR is set at 1 Gbps for uplink packets and
500 Mbps for downlink packets. The RAN is transmitting packets from a UE with

33

1.5 Gbps speed. The UPF is sending them out at 1 Gbps rate to the DNN, which
is mirroring back the packets at the same rate (1 Gbps). The UPF is then again
restricting the downlink packets to 500 Mbps. Both the designs perform as expected.
For 64 B packets, the pipeline throughput is slightly less than expected as it is
bottlenecked by its single-core packet processing capability for duplex traffic. For
larger packets, exact throughputs are obtained, as shown.

Duplex Throughput (Mbps), Rate Limit: 1 Gbps + 500 Mbps
[DPDK -RTG-DL (Mbps) [DPDK - RTC - UL (Mbps) [DPDK - Pipeline - DL (Mbps) [l DPDK - Pipeline - UL (Mbps)

1750 1750
1500 1500

1250 1250

1000 1000

750 750

500 500

250 250

Throughput (Mbps)

0 0

64 256 1024 1400

Payload Size (in Bytes)

Figure 6.8: Rate limiting both UL and DL packets simultaneously

Figure 6.9 shows the rate-limiting functionality across multiple cores and multiple
UEs. 4 UEs are sending data packets with speed > 250 Mbps each. Session-AMBR
is set to 250 Mbps per UE in the UPF. RSS on NIC divides traffic from the UEs to
3 separate cores, such that 2 UEs are directed to 1 core (core 3), and the other 2
UEs are directed to the two other cores (cores 1 and 2). As expected, in core 3, total
throughput is 500 Mbps. The output from both the UEs is limited to 250 Mbps, with
rate limit on 1 UE independent of the rate limit on the 2nd UE. On the other two
cores, outgoing speed is restricted to 250 Mbps.

DL Multicore QoS (250 Mbps rate limit per UE)

B Core3(UE4) M Core3(UE3) M Core2(UE2) W Core1(UE1) B B B B

1000 1000

750

500

Throughput (Gbps)

250

512 1400

Payload Size (B)

Figure 6.9: Rate limiting across multiple cores/UEs

34

6.2.5 QoS overhead

Any real-life UPF should support QoS. Results without enforcing QoS make little
sense in the practical context. However, the performance results are briefly put here

for the sake of completeness and to give an idea of how much overhead is caused by
the QoS implementation.

The RTC based design can process 5.51 Mpps in the uplink and 4.34 Mpps in
the downlink when QoS is disabled. When QoS is enabled, the UPF can process
5.17 Mpps in the uplink and 4.11 Mpps in the downlink. This slight decrease in
performance is due to the following additional overheads when QoS is enforced:

o Calculating current time periodically to update FTS and extract packets.

o Updating LTS after processing each packet.

 In addition to calling extract() after every 32 packets, extract() is also called
periodically every 100 us when QoS is enabled. This is to ensure F'T'S remains
up-to-date even when there are no incoming packets, as well as to transmit any
residual packets that may have been previously enqueued.

pollForPackets 10007 RN D SoTT st O —
[L?:::t :tn ﬁnlsofnlll; :ngﬁ;z:;::im 122:?;/: __ [Loop at line 1019 in pollForPackets] 93.9%
u 83.5% o
180% D
11.8% @B
11.7% @l
51% @
49% B
o T 09% |
htonl 0.4% |
fUnc@0x62520 0.4%
func@0x611f0 0.3% func@Ox62520 0.4% |
func@0x60cd0 0.2% func@0x60cd0 0.3%
rte_eth_nx_burst 58% @ func@0x611f0 0.3%
rte_eth_rx_burst 60% @
(a) QoS disabled (b) QoS enabled

Figure 6.10: RTC: Profiling with and without QoS*

Figure 6.10 shows code profiling for the RTC design, both with (Fig. 6.10b) and
without QoS (Fig. 6.10a). Due to the said overheads, uplinkPacketHandler() in Fig-
ure 6.10b — which is called for each packet — gets less percentage of CPU time.
Also, some CPU usage is spent on rte_rdtsc(), which calculates the current time.

Although the pipeline design follows the same trend, there are some issues. In
the downlink, maximum packets processed by the UPF is 2.96 Mpps when QoS is
disabled and 2.89 Mpps when Qos is enabled. In contrast, the uplink throughput
drops from 4.22 Mpps to 3.51 Mpps when QoS is enforced. The reason for this is yet
to be determined. Further inspection is required to find out why the pipeline uplink
packet handling code is behaving differently from the other cases (i.e., significant drop
in performance when QoS is enabled) and will be done in the future.

!Profiling done using Intel vTune Amplifier

35

6.2.6 Comparison of different UPF designs
6.2.6.1 RTC vs Pipeline

The RTC based design performs better than the pipeline based design, as already
mentioned in section 6.2.1. Following are the reasons:

o As shown in figure 6.11, uplinkPacketHanlder() — which is called per packet —
is getting more of the CPU time in the RTC based design. Since in the pipeline
design, two cores listen for traffic from the RAN and the DNN and both the
cores can enqueue packets in the s/w ring of the same worker core, the worker
core has to check whether a packet is coming from the RAN or the DNN every
time. This is not there in the RTC design, as depending on the NIC port a core
listens to, it can determine the source of the packet.

» Overhead of enqueuing to and dequeuing packets from the s/w rings.

o Deciding where to redirect the packet in the userspace as opposed to RSS on
NIC in the RTC design.

As a result, uplinkPacketHandler() only utilises 68.5% of the CPU time. Hence, the
number of packets processed is less in the pipeline design.

pollForPackets 100.0% (I 1000% EEE—————
[Loop at line 1001 in pollForPackets] 100.0% S 100.0% N
[Loop at line 1019 in pollForPackets] | 94.1% IS o0p 97.9%
i I
upfiuplinkPacketHandler 83.6% I ;'u*’n'(@omm 62;:
func@0x62520 04% | funceOé0d10 o
func@Ox6110 0.3% func@0x62570 o1
func@0x60cd0 0.2% rte_ring_sc_dequeue_burst 14% |
rte_eth_rx_burst 58% @ std:ostream:flush 06% |
(a) RTC design (b) Pipeline design

Figure 6.11: Code profiling: RTC vs Pipeline?

It would be interesting to see how both the designs perform when there is only
1 NIC port to listen to (instead of the 2 NIC-port setup currently). Then, the RTC
design would also have to check the source of an incoming packet every time, and the
difference in performance may reduce.

6.2.6.2 Comparing the UPFs in 5G testbed

This section compares the various UPF designs currently being developed in the 5G-
testbed. DPDK-based UPF processes packets in the userspace. eBPF/XDP-based
UPF processes packets in the Linux kernel device driver level. SmartNIC-based UPF
processes and forwards packets from the NIC itself. Kernel UPF is the baseline design.

» Single-core throughput for various payload sizes:
Figure 6.12 compares the uplink throughput for various payload sizes. The
RTC based UPF has the highest packet processing rate. It processes ~ 40%
more packets than the next best option — the eBPF based UPF. The pipeline
design performs slightly worse than the eBPF based UPF. Kernel UPF can pro-
cess only 0.06 Mpps.

2Profiling done using Intel vTune Amplifier

36

Packets Processed per sec (Single Core)

® DPDK - Pipeline (Mpps) 4 DPDK-RTC (Mpps) ® XDP (Mpps) @ Kernel (Mpps)

517 5.14

0 10G saturated
Q
g 4 342
g —73: 9 3 (0.
* 41
% 351 35 5
o 3.42
£
» 2
a
£ 083
Q R 3
8 — s
1.1
083
. -
64 128 256 512 1024 1400

Payload Size (B)

Figure 6.12: Single core performance of various UPFs (Uplink)

Figure 6.13 compares the downlink throughput for various payload sizes. Again,
the RTC design outperforms all. However, the eBPF based UPF processing rate
is only ~ 13% below the RTC design, while being ~ 20% above the pipeline
design. This difference from the uplink comparison is because downlink involves
more userspace packet processing (adding and copying headers) in the DPDK
UPFs, while eBPF UPF can process packets in the driver level itself. Again,
kernel UPF can process only 0.06 M pps.

Packets Processed per sec (Single Core)

® DPDK - Pipeline (Mpps) 4 DPDK - RTC (Mpps) = XDP (Mpps) ® Kernel (Mpps)

41 409 10G saturated

Packets Processed (Mpps)

64 128 256 512 1024 1400

Payload Size (B)

Figure 6.13: Single core performance of various UPFs (Downlink)

o Performance with multiple UEs/sessions:

Figure 6.14 shows the downlink performance of various UPFs (single-core)
when the number of active UEs are increased from 1 to 16384. 99k sessions were
established before sending any data packets. Each session had 2 PDRs — 1 for
uplink packets and another for downlink packets. All the UPF designs show
negligible performance degradation even when 16384 UEs are downloading data
simultaneously (~ 0.15 Mpps).

37

MultiUE performance (1 core, 64B payload)
@® DL -RTC @ DL -Pipeline == DL - XDP @ Kernel
5
4.07 4.05 4.06 4.01 4.01 4.01 4.00 398
- 4 o— o Py - d < - L
2 o < ° ° —o
s 3.63 2 356 353 3254 5 0
h-]
@ 3 o * o — ° P~ ° -
7] b -
% 92 91 90 89 88 2.87 86 729
e -) 82
= 2
o
2]
-
$
3] 1
1]
o
0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
0 a - - - Py a - -
1 4 16 64 256 1024 4096 16384
No. of UEs

Figure 6.14: Performance of various UPFs with multiple UEs

e Scalability across multiple cores:
Figure 6.15 shows downlink performance of the UPFs across multiple cores.
The RTC design takes 2 cores to saturate 10 Gbps. In contrast, the eBPF UPF
and the pipeline based design take 3 cores to do so. All designs scale almost
linearly, although we can only say anything certain about the scalability of the
RTC based design after moving to 40G' NIC.

. - . 10G saturated
Multicore Scalability (64B payload, Downlink)
@ DPDK - RTC @ DPDK - Pipeline DP
8
7.02
o—7-02- ® 7.

o 7.02 7.02
2
o
=3
©
[+F]
(7]
8 4
Q
e
o
a
£ 2
Q
[
o

0

0 1 2 3 4
No. of cores

Figure 6.15: Multi-core performance of various UPFs (Downlink)

38

e In-depth comparison of DPDK-UPF and eBPF-UPF:
The eBPF based UPF is faster than the pipeline design, but slower than the
RTC design.

UPF design CPU cycles used Throughput
for packet (Mpps)
processing (%)
DPDK-RTC 83.64% 5.17
(Uplink)
eBPF/XDP 56.03% 3.69
(Uplink)
DPDK-RTC 71.16% 4.11
(Downlink)
eBPF/XDP 59.16% 3.63
(Downlink)

Table 6.3: Comparing packet processing times of DPDK and eBPF based UPF

Table 6.3 shows how much CPU both the UPFs used for processing data plane
packets (both uplink and downlink). Profiling was done using the perf tool.
In the uplink, the DPDK based UPF gets ~ 33% more processing time than
the eBPF based UPF. This is because I/O operations are more costly in XDP
than in DPDK. As a result, DPDK-UPF performance is better by ~ 29%. The
two percentages are not the same because DPDK-UPF takes around 230 ns to
process a packet in the userspace while eBPF-UPF takes around 188 ns. Note
that in both of the UPFs, this time is calculated from the moment a packet is
received (in userspace in case of DPDK) till before it is sent out (just before
calling the TX API in case of DPDK). Hence, this value is different from the
values shown in Tables 6.1 and 6.2.

Similarly, in the downlink, the difference in CPU cycles used is ~ 17%. As a
result, DPDK based UPF performance is ~ 12% better than the eBPF based
UPF.

e Summary:

Finally, Table 6.4 gives an overall summary of the various UPFs (exclud-
ing the kernel-based UPF). Each UPF design has certain pros and cons, and
developers should decide which UPF to use based on the workload, resources
available and ease of implementation required.

39

Factors | DPDK-UPF | XDP-UPF | SmartNIC-UPF |

NIC Should be No restrictions Should be
compatible (driver support compatible
required for
maximum
performance)
Checksum Offloaded to NIC No offload feature | No offload feature
calculation /
verification
QoS imple- Easier to Difficult Difficult
mentation implement in
userspace
Handling Process in Easier to handle Easier to handle
non-UDP userspace
packets (complex) / resend
(ARP/HTTP) to kernel
Performance RTC design better | Better than DPDK | Better when QoS
overall pipeline is disabled

Table 6.4: UPF design comparison

Note that SmartNIC data is not shown in any of the graphs. Although Smart-
NIC performs best when QoS is disabled (saturating line rate for any payload
size), there are some issues with the SmartNIC based UPF once QoS is enabled,
due to which similar data is not available. Discussing those issues are beyond
the scope of this report.

40

7. Related Work

DPDK based UPF: Lee et al. [9] have proposed a few methods in their white-
paper to scale up the UPF. They use a Smart-NIC to redirect GTP encapsulated
packets to separate cores by checking the inner IP address (i.e., UE IP). DPDK APIs
are used to receive the packets from the NIC RX queues to the userspace. Once
received, the cores follow the RTC model to process the packets and send them out.
The paper is mainly focused on achieving high throughput (~ 200 Gbps, 40 cores) in
the UPF irrespective of the type of workload. The authors state the techniques they
have used without giving any background on why they chose such techniques.
While inspired by [9], the DPDK based UPF at IIT-B goes beyond what the paper
did. This work also aims to saturate the line rate between the UPF and other NFs
and can currently process packets 4.X faster than [9] per core. However, this work first
explains why frameworks like DPDK are actually required to build high-performance
UPFs. The novelty in the current implementation is that it supports both the pipeline
based design and the RT'C based design and compares them, listing the pros and cons
of each so that developers can choose the appropriate design based on the type of
workload as well as the available resources.

Another DPDK based UPF design from Intel [8] uses a 3" party accelerator —
Metaswitch’s Composable Network Application Processor (CNAP) — for packet pro-
cessing. CNAP uses a highly configurable match-action classifier which optimizes
packet processing to provide very high throughput (~ 500 Gbps, 25 cores, 839 B
payload). The current work does not use any such classifier for processing packets.
Further comparisons are not possible at this moment due to very little information
available on [8].

Alternate UPF designs: Additionally, the current work also performs a com-

parative study of the DPDK based design with the eBPF/XDP based UPF as well as
the SmartNIC based UPF design, which are being currently developed in the 5G test-
bed. The main difference in each of these designs is the level at which the UE data
packets are processed. In the SmartNIC based UPF, incoming packets are matched
against the PDRs in the NIC itself and then forwarded to the DNN. The eBPF based
UPF uses XDP [15], which provides a programmable and high-performance data path
in the Linux kernel, at the device driver level. The TCP/IP stack is skipped to avoid
the kernel-related bottlenecks. In contrast, the DPDK based UPF bypasses the ker-
nel, and all packets are processed in the userspace. A detailed comparison among the
UPFs is already discussed in Section 6.2.6.
Other than that, DPDK based UPF with eBPF/SmartNIC in the kernel/NIC level
respectively is also being explored. In this model, the majority of the packets will be
sent out directly via eBPF/SmartNIC (fast path), while redirecting remaining packets
to the userspace via DPDK (slow path). These remaining packets can either be CP
packets or packets which need to be queued for rate-limiting in some sophisticated
QoS application only possible to implement in the userspace.

41

8.

Current and Future Work

Following are a few of the things that are being implemented currently or will be
interesting to explore in the future:

Fixing UPF issues

There are a few issues w.r.t both the pipeline and the RTC model. For ex-
ample, the RTC model fluctuates above and below the rate limit too frequently
if Horizon > 100ms. Currently, such issues are being fixed before moving on
to adding new features.

Adding wildcards to packet rules

Currently, PDIs in the packets match exactly with the PDIs in the PDRs.
3G PP specification also allows wildcards in PDRs. For example, instead of a
unique UE IP, the rule may state that all UE IPs within a range must perform
the same action. Thus, wildcard matching must be incorporated in the future
versions of the UPF.

Guaranteed Minimum Bit-rate (GBR) in QoS

GBR is an essential feature for any UPF, as it is natural for users to desire
a minimum outgoing bit-rate for the subscription fees they pay. Thus, the QoS
implementation needs to be revamped in the future. Note that Carousel [16]
may not be a suitable fit for future QoS implementations and other state-of-
the-art techniques may need to be looked at.

Optimizing the UPF further

Introducing h/w accelerators (for instance, DPDK flow library [7]), or com-
bining the DPDK based UPF with SmartNIC (in the NIC level) / eBPF (in the
Linux kernel level) is an interesting area to explore in the future, to improve
the UPF performance further. Based on the current results, although the RTC
design performs better than other UPFs, the pipeline design performance has
the potential to be boosted when combined with eBPF /smartNIC.

Scaling across NUMA nodes

Future work involves designing the DP in a way that scaling up across
the NUMA nodes does not become a bottleneck, as it is well established that
inter-core communication when two cores are in different NUMA nodes is quite
expensive.

Multiple UPF setup

Current 5G DP has only 1 UPF forwarding uplink packets to the DNN
and downlink packets to the RAN. Future work may include building a data
plane supporting multiple UPFs between the RAN and the DNN, with GTP
tunnelling between 2 UPFs.

42

9. Conclusion

5G architecture can tackle various data/latency driven use-cases and the ever-increasing
cellular traffic associated with it. This report presents an overview of the kernel-based
5G test-bed Data Plane design and the problems arising with fast packet 1/O due
to the kernel TCP/IP stack limitations (for instance per packet interrupt and TUN
device overhead). The report then moves on to how kernel bypass techniques like
DPDK optimizes the Data Plane, and details about the DPDK-based UPF design,
where packet processing is done in the userspace, and the TUN device is removed.
Currently, two models are supported — RTC and pipeline based design. Both the
designs are multi-core scalable. Without the previous limitations, both have thus
saturated the 10G link between the RAN, the UPF and the DNN. The UPF per-
formance stays almost the same, even when multiple UEs are active simultaneously
(tested with 24 UEs). The RTC design performs better currently and saturates
the downlink from 256 B payload onwards. In contrast, the pipeline design saturates
from 512 B payload onwards when a single core is dedicated to DP packet processing.

This report also discusses the various observations made along the way regard-
ing design and implementation aspects, evaluates the current DPDK based UPF,
and compares it with other UPFs being implemented alongside currently (over ker-
nel/XDP /SmartNIC). Currently, the RTC based design outperforms all other UPFs
after enforcing QoS.

43

Acknowledgement

I thank Prof. Mythili Vutukuru, who has guided me throughout this project with
crucial insights and valuable feedback. My gratitude towards the project engineers
of the 5G test-bed team, who helped me become familiarized with the 5G standards,
and also cleared my concepts. I also thank the SynerG faculty, the PhD students and
my M.Tech colleagues for their inputs, feedbacks and help all along the way.

44

Bibliography

DPDK overview. https://doc.dpdk.org/guides/prog guide/overview.html

\)

DPDK mempool library. https://doc.dpdk.org/guides/prog_ guide/mempool_lib.html
DPDK mbuf library. https://doc.dpdk.org/guides/prog guide/mbuf lib.html

= W

e o . W WO

DPDK ring library. https://doc.dpdk.org/guides/prog_ guide/ring_lib.html
DPDK hash library. https://doc.dpdk.org/guides/prog guide/hash_lib.html

S Ot

DPDK timer library. https://doc.dpdk.org/guides/prog_ guide/timer_lib.html

\]

DPDK generic flow library. https://doc.dpdk.org/guides/prog guide/rte_ flow.html

— — — — — — — —

Lighting Up the 5G Core with a High-Speed User Plane on Intel Archi-
tecture: https://www.metaswitch.com/blog/intel-and-metaswitch-lights-up-the-
5g-core-with-a-500-gbps-cloud-native-upf

9] Lee, D.J., Park, J.H., Hiremath, C., Mangan, J., Lynch, M., 2018. Towards
achieving high performance in 5G mobile packet core’s user plane function.
[White paper from Intel & SK Telecom]

[10] 3GPP Ref #: 23.501. 2017. System architecture for the 5G System (5GS).
https://www.3gpp.org/ftp/Specs/archive/23_series/23.501/

[11] 3GPP Ref #: 23.502. 2017. System architecture for the 5G System (5GS).
https://www.3gpp.org/ftp/Specs/archive/23_series/23.502/

[12] 3GPP Ref #: 29.060. 2017. System architecture for the 5G System (5GS).
https://www.3gpp.org/ftp/Specs/archive/29 series/29.060/

[13] 3GPP Ref #: 29.244. 2017. System architecture for the 5G System (5GS).
https://www.3gpp.org/ftp/Specs/archive/29 series/29.244/

[14] 3GPP Ref #: 38.415. 2017. System architecture for the 5G System (5GS).
https://www.3gpp.org/ftp/Specs/archive/38 series/38.415/

[15] Heiland-Jgrgensen, Toke, Jesper Dangaard Brouer, Daniel Borkmann, John
Fastabend, Tom Herbert, David Ahern, and David Miller.*The express data
path: Fast programmable packet processing in the operating system kernel.”
In Proceedings of the 14th International Conference on Emerging Networking
EXperiments and Technologies, pp. 54-66. 2018.

[16] Saeed, Ahmed, Nandita Dukkipati, Vytautas Valancius, Vinh The Lam, Carlo
Contavalli, and Amin Vahdat. “Carousel: Scalable traffic shaping at end hosts.”

In Proceedings of the Conference of the ACM Special Interest Group on Data
Communication, pp. 404-417. 2017.

45

Appendices

46

A. Implementation bugs and fixes

The following list contains some of the bugs encountered and fixes provided, as well
as things that degraded the UPF performance while implementing the DPDK based
UPF. This is listed here to support any future DPDK based UPF, or any UPF/DPDK
application in general.

o rznombuf errors: DPDK was unable to allocate sufficient memory for incoming
packets, due to no free space in the configured mempool. Previous packets may
not have been appropriately freed. This issue also arose when the s/w ring size
was set too large (2%°). Ring sizes till 2! work fine.

o Multi-threaded setup does not work well with DPDK while receiving packets,
as the application needs the whole core to itself for polling the NIC RX queue.
Hence, any core using the receive API must not spawn any thread if it has to
handle a large number of packet /0. As a result, the 2 NIC setup must have
two dedicated cores to receive packets from the NICs.

o In DNN, packets were seen on Wireshark, but not received by the application.
This is because the source address of the inner IP (that is, UE IP) was not
routable from the DNN and hence kernel was discarding the packet. The solu-
tion is to statically set up the route so that when such a packet comes, it should
be routed via the UPF. Another solution is disabling rp_ filter in the DNN;, so
that kernel does not check for routes. This problem is only evident if the DNN
is an iperf server. No such issues with DPDK based DNN.

o While compiling, fsanitize=address flag was enabled for the compiler. While it
checks for memory leaks by periodically monitoring the application in the back-
ground, it hinders DPDK performance. Disabling the flag increased throughput
by 3X. Similarly, htop or any profiling application running in the background
in the same core will degrade DPDK performance.

o Profiling the code helped reduce a lot of bottlenecks — platform logs for de-
bugging, functions taking high CPU time due to multiple addition/deletion of
records in the program stack etc. — which made the code faster. For a sin-
gle DP core forwarding 1422 B packets, throughput went up from 6.2 Gbps to
saturating line rate (~ 9.8 Gbps) by removing these bottlenecks in Stage-I.

o rzerror in RAN/DNN: After receiving a batch of packets, some packets were
freed while some were sent ahead. Wrong checksum calculation can also cause
this issue.

o Scaling issues: Per core variables and data structures should be used wherever
applicable. Scaling issues arise mostly due to some race conditions where a
particular variable is shared between the cores.

47

	Introduction
	Problem Statement
	Contribution

	Background
	5G architecture

	Data Plane in the 5G Test-bed
	User Plane Function (UPF)
	PDU Session Setup
	Packet Forwarding Control Protocol (PFCP) interface
	Optimizing the PFCP library

	Data Plane procedures
	GTP tunnelling
	Packet Processing
	End to end data transfer

	Kernel based UPF limitations

	Optimizing the 5G Data Plane
	Intel Data Plane Development Kit
	Kernel bypass design
	ARP request and response
	Registering with NRF
	Handling Control Plane Messages
	Designing the Data Plane
	Handling Data Plane Messages

	Challenges
	Design Choices
	Scalability across NUMA nodes
	Implementation challenges

	Enforcing Quality of Service (QoS)
	State of the art QoS
	QoS in the DPDK based UPF

	Evaluation
	Experimental Setup
	Results
	Single core performance
	Scalability with multiple cores
	Latency measurements
	QoS correctness
	QoS overhead
	Comparison of different UPF designs
	RTC vs Pipeline
	Comparing the UPFs in 5G testbed

	Related Work
	Current and Future Work
	Conclusion
	Appendices
	Implementation bugs and fixes

